Schwarzschild’s metric for the black hole:
For constant t, θ φ we compute the arc length of a radial curve to the horizon by integrating dr to the surface, r → rs.
Wolfram says that the integral of 1/(√(1-1/x)) is ((√x)(x-1) + √(x-1) log(2(√(x-1) + √x)))/√(x-1).
Query expression is 1/(Sqrt[1-1/x])
Scheme:
(define (f x) (/ (+ (* (sqrt x)(- x 1)) (* (sqrt (- x 1)) (log (* 2 (+ (sqrt (- x 1)) (sqrt x)))))) (sqrt (- x 1))))
Metric: (define (g x) (/ (sqrt (- 1 (/ x)))))
x | f(x) |
1000 | 1004.34 |
100 | 103.185 |
10 | 11.998 |
5 | 6.609 |
2 | 2.989 |
1.2 | 1.617 |
1.15 | 1.487 |
1.1 | 1.334 |
1.01 | .8934 |
1.001 | .7564 |
1.0001 | .7131 |
1.00001 | .6995 |
1.000001 | .669515 |
To verify Wolfram and my transcription we differentiate the integral numerically and get
(define (df x) (/ (- (f (+ x dx)) (f x)) dx))
(define dx 0.0000001)
x | (df x) | (g x) |
1000 | 1.0004987416323274 | 1.0005003753127737 |
100 | 1.00503783073691 | 1.005037815259212 |
10 | 1.0540925288182734 | 1.0540925533894598 |
7 | 1.080123457342097 | 1.0801234497346435 |
4 | 1.154700530747732 | 1.1547005383792517 |
2 | 1.4142135418282464 | 1.414213562373095 |
1.5 | 1.732050751712677 | 1.732050807568877 |
1.1 | 3.3166240398507796 | 3.3166247903553994 |