Schwarzschild’s metric for the black hole:
For constant t, θ φ we compute the arc length of a radial curve to the horizon by integrating dr to the surface, r → rs.

Wolfram says that the integral of 1/(√(1-1/x)) is ((√x)(x-1) + √(x-1) log(2(√(x-1) + √x)))/√(x-1).

Query expression is 1/(Sqrt[1-1/x])

Scheme: (define (f x) (/ (+ (* (sqrt x)(- x 1)) (* (sqrt (- x 1)) (log (* 2 (+ (sqrt (- x 1)) (sqrt x)))))) (sqrt (- x 1))))
Metric: (define (g x) (/ (sqrt (- 1 (/ x)))))
xf(x)
10001004.34
100103.185
1011.998
56.609
22.989
1.21.617
1.151.487
1.11.334
1.01.8934
1.001.7564
1.0001.7131
1.00001.6995
1.000001.669515
You could find an exact formula for the limit by l’Hôpital’s rule but I am too lazy. It seems that the distance in finite.

To verify Wolfram and my transcription we differentiate the integral numerically and get
(define (df x) (/ (- (f (+ x dx)) (f x)) dx))
(define dx 0.0000001)
x(df x)(g x)
10001.00049874163232741.0005003753127737
1001.005037830736911.005037815259212
101.05409252881827341.0540925533894598
71.0801234573420971.0801234497346435
41.1547005307477321.1547005383792517
21.41421354182824641.414213562373095
1.51.7320507517126771.732050807568877
1.13.31662403985077963.3166247903553994
This calculation is via the Schwarzschield metric and other metrics would provide a different answer or none.