Riemann Tensor in Polar Coordinates

The plane is flat and RπœŒΟƒΞΌΞ½ should be 0 even when we use polar coΓΆrdinates. So lets compute RπœŒΟƒΞΌΞ½.

ds2 = dr2 + r2dΞΈ2. (r, ΞΈ) = (x1, x2).
gij =
10
0r2
.
g22,1 = 2r and other gab,c’s are 0.
Ξ“a bc = Β½(βˆ‚cgab + βˆ‚bgca βˆ’ βˆ‚agbc)
Ξ“1 22 = βˆ’r and Ξ“2 12 = Ξ“2 21 = r; others are 0.
Ξ“abc = gax Ξ“x bc
Ξ“122 = βˆ’r and Ξ“221 = Ξ“212 = 1/r; other Ξ“abc = 0.
RπœŒΟƒΞΌΞ½ = βˆ‚ΞΌΞ“πœŒΞ½Οƒ βˆ’ βˆ‚Ξ½Ξ“πœŒΞΌΟƒ + Ξ“πœŒΞΌΞ»Ξ“Ξ»Ξ½Οƒ βˆ’ Ξ“πœŒΞ½Ξ»Ξ“Ξ»ΞΌΟƒ
We enumerate the non-zero terms above:
βˆ‚1Ξ“122 = βˆ’1 (+=> R1212; βˆ’=> R1221)
βˆ‚1Ξ“212 = βˆ’rβˆ’2 (+=> R2211; βˆ’=> R2211)
βˆ‚1Ξ“221 = βˆ’rβˆ’2 (+=> R2112; βˆ’=> R2121)
Ξ“πœŒΞΌΞ»Ξ“Ξ»Ξ½Οƒ:
Ξ“111Ξ“111 + Ξ“112Ξ“211 = 0
Ξ“111Ξ“112 + Ξ“112Ξ“212 = 0
Ξ“111Ξ“121 + Ξ“112Ξ“221 = 0
Ξ“111Ξ“122 + Ξ“112Ξ“222 = 0

Ξ“121Ξ“111 + Ξ“122Ξ“211 = 0
Ξ“121Ξ“112 + Ξ“122Ξ“212 = βˆ’1 (+=> R1221; βˆ’=> R1212)
Ξ“121Ξ“121 + Ξ“122Ξ“221 = βˆ’1 (+=> R1122; βˆ’=> R1122)
Ξ“121Ξ“122 + Ξ“122Ξ“222 = 0

Ξ“211Ξ“111 + Ξ“212Ξ“211 = 0
Ξ“211Ξ“112 + Ξ“212Ξ“212 = rβˆ’2 (+=> R2211; βˆ’=> R2211)
Ξ“211Ξ“121 + Ξ“212Ξ“221 = rβˆ’2 (+=> R2112; βˆ’=> R2121)
Ξ“211Ξ“122 + Ξ“212Ξ“222 = 0

Ξ“221Ξ“111 + Ξ“222Ξ“211 = 0
Ξ“221Ξ“112 + Ξ“222Ξ“212 = 0
Ξ“221Ξ“121 + Ξ“222Ξ“221 = 0
Ξ“221Ξ“122 + Ξ“222Ξ“222 = βˆ’1 (+=> R2222; βˆ’=> R2222)

In summary:
R1212 = βˆ’1 βˆ’ βˆ’1 = 0
R1221 = βˆ’ βˆ’1 + βˆ’1 = 0
R2112 = βˆ’rβˆ’2 + rβˆ’2 = 0
R2121 = βˆ’ βˆ’rβˆ’2 βˆ’ rβˆ’2 = 0

It wasn’t easy but they managed to all cancel out! Also RπœŒΟƒΞΌΞ½ = 0. This gave me tools to find a bug in this, which I fixed.
Here is a version for the unit sphere.