It seems that
∑[n>0 and n odd] n
−2
= π
2
/8.
∑[n>0 and n even] n
−2
= ∑[n>0] (2n)
−2
= ¼ ∑[n>0] n
−2
.
But ∑[n>0] n
−2
= ∑[n>0 and n odd] n
−2
+ ∑[n>0 and n even] n
−2
= π
2
/8 + ¼ ∑[n>0] n
−2
.
Thus ¾ ∑[n>0] n
−2
= π
2
/8
and ∑[n>0] n
−2
= π
2
/6.