
1

Fully Distributed Representation

Pentti Kanerva

RWCP Neuro SICS Laboratory
Real World Computing Partnership

Swedish Institute of Compute Science
e-mail: kanerva@sics.se

Abstract

A fully distributed representation based on the binary spatter code is described. It is shown how the
information of a conventional record with fields is encoded into a long random bit string, or a holistic
record, that has no fields, and how the fields are extracted from the holistic record. It is argued that
holistic representation should be used in modeling high-level mental functions.

1. INTRODUCTION

Local representation—records with fields—so domi-
nates our computing practices that we are hardly
aware of alternative representations, or even the need
for any. By representation is meant, simply, how
information is laid out in bits in some physical
medium, for example in a computer memory or a
neural net. With local representation, the meaning of
a bit—what a bit refers to—is tied to its location. To
decide what a bit pattern is, we must therefore know
where it comes from. This creates the need for a sys-
tem that keeps track of where information is located.
A computer program is such a system.

The search for distributed representations (e.g.,
Anderson, 1995; Hinton, 1990; Hinton et al., 1986;
Pollack, 1990; Smolensky, 1990; Touretzky & Geva,
1987; Touretzky, 1990) has grown out of the realiza-
tion that traditional representation, as used in com-
puters, is not only artificial but that it may actually
hinder the development of the kind of computing that
makes brains intelligent. One reason would be that
traditional representation relies on a program to inter-
pret it, and that intelligent programs of the traditional
kind are extremely difficult to find with automated
learning methods because programs are unstable. A
superficially minor change—an incorrect bit or a
misplaced symbol—can wreck an otherwise good
program. Learning methods that rely on incremental
improvements cope poorly with instability, and good
programs are so rare among all possible programs
that finding them by chance is hopeless.

Written as a tutorial, this paper demonstrates with
simple examples a fully distributed alternative to
local representation, so as to make the ideas accessi-
ble. Properties of the representation are discussed,
and pointers to past and future research are given. For
the benefit of those already familiar with distributed

representation it is pointed out that the present system
is related to Plate’s (1994) Holographic Reduced
Representation and is described in the same terms.

2. RECORDS WITH FIELDS

Local representation stores information in records
with fields. Figure 1 shows some examples. A binary
attribute- or feature-vector is the simplest example.
Such a vector for N attributes is then a record with N
one-bit fields. Figure 1a shows unary encoding of the
English alphabet with such vectors. Unary encoding
and its real-valued counterpart are common in statis-
tical classifiers (e.g., artificial neural nets), with each
class having its own output variable. Such codes are
easy for us to interpret but their use of bits is waste-
ful.

Figure 1b shows a record for a name made of 12
five-bit fields for the letters. The representation of a
letter within a field is now distributed, as no particu-
lar bit will tell whether the letter is an A, for example.
In Figure 1c such a record is used as the name field of
another record that has fields also for sex and age.

PSmith
611 60 62 68

sexname age

malePAT _ _ _ _ _ _ _ _ _ 66

E
1

A

0

PAT
1 . . 5

P

10000

2

B

0
. .

E

1
. .

F

0
. .

G

0
. .

. .

. .
3

C

0
. .

D

0
. .

. .

. .
. .

X

0
. .

Y

0
26

Z

0

6 . .10

A

00001
11...15

T

10100
16...20

space

00000
21 . . . 60

. . .

0 0

(c)

(a)

(b)

Figure 1. Local representation: records with fields.

2

Figure 2 makes the point that two records that dif-
fer from each other minimally can mean very differ-
ent things. It demonstrates that traditional data
representation is unstable in the same sense as tradi-
tional programs are. Figure 3 shows that the same
information can take very different forms.

3. DISTRIBUTING THE RECORD

In this section we see how the information of a tradi-
tional record, the three-field record of Figure 1c, can
be encoded into a binary vector without fields. Each
field will be distributed fully, over the entire vector,
so that each bit contains some information about
every field. The resulting record is called holo-
graphic or holistic.

Codewords or -vectors. The holistic record is built
of codewords for field names (variables, roles) and
for values that occupy the fields (fillers). All code-
words are long, random bit strings or binary N-vec-
tors; N = 10,000 will be used in our examples. The N
bit positions or coordinates or columns (as in a table
where the vectors are the rows) of a codeword are
independent of each other, and 0s and 1s are equally
probable, p = Pr{1} = 0.5. To encode the record for
Pat Smith, one such codeword is needed for each of
‘name’, ‘Pat’, ‘sex’, ‘male’, ‘age’, and ‘66’. The
codewords are written in boldface: name, Pat, sex,
male, age, and 66.

Binding and chunking. A holistic record is com-
posed in two steps called binding and chunking.
Binding encodes a field, and chunking combines the
fields into a record. Binding is done with coordinate-
wise Boolean Exclusive-OR (XOR, ⊗), so that ‘name
= Pat’ is represented by the 10,000-bit codeword
name⊗ Pat. This corresponds to storing ‘Pat’ in the
name field of a traditional record. Similarly, sex⊗
male and age⊗ 66 encode the other two fields.

The encoded fields are chunked into a holistic
record according to the majority rule. Each bit of the
record will be a 0 or a 1 according to which of them
appears more often in that position, or column, in the
(three) vectors that are being chunked. When the
number of chunked vectors is even and there are ties,
they are broken at random with probability 1/2. The

composed record also has N bits, with 0s and 1s
equally probable, and thus it can, in turn, be assigned
as a value to a field (i.e., bound to a variable) and
chunked into further N-bit records. This property
makes the code recursive.

The majority rule can be realized as a thresholded
sum: by thresholding the columnwise sums at half the
number of chunked vectors. The holistic record for
Pat Smith—the encoding of ‘name = Pat & sex =
male & age = 66’—can then be expressed as

PSmith = [name⊗ Pat + sex⊗ male + age⊗ 66]

where the brackets […] indicate thresholding. The
vectors that are combined by chunking are also called
parts. To break ties when the number of parts is even,
we can chunk a random vector R with them (that pos-
sibly is a function of the parts).

Chunking can be compared to creating a pointer to
a conventional record (see Fig. 3), which then repre-
sents the record. This is how symbolic (list) struc-
tures are constructed. The main similarity between
the two is uniformity: all chunked records have the
same number of bits, N, and all pointers have the
same number of bits, L. One major difference is that
N is much larger than L (usually L < 30), and the
other, which is related to the first, is that a conven-
tional pointer hides its relation to the contents of the
record, whereas chunking leaves the parts visible.

Visibility of Parts. When K codewords are
chunked, the resulting codeword bears more than
chance resemblance to its constituent parts. The
smaller K is, the greater the similarity. If K = 3 and if
A, B, and C are random and independent and X = [A
+ B + C], how close is X to A, or PSmith to
name⊗ Pat? The expected (Hamming) distance, rela-
tive to N, is the probability that the corresponding
bits of X and A differ, δ(X, A) = Pr{Xn ≠ An}. If a bit

PSmith

sexname age

malePAT _ _ _ _ _ _ _ _ _ 66

PSmithF
611 60 62 68

femalePAT _ _ _ _ _ _ _ _ _ 66

Figure 2. Two very different Pat Smiths, two very
similar bit strings.

1 32

PSmith
611 60 62 68

sexname age

malePAT _ _ _ _ _ _ _ _ _ 66

PSmith2
1 9 682 8

sex nameage

male PAT _ _ _ _ _ _ _ _ _66

Pointer to PSmith,
a memory address

Figure 3. Three representations of PSmith, three
very different bit strings.

3

of A is a 0 and the same bit of X is a 1, it must be a 1
also in B and C to constitute a majority. This happens
with probability 0.25, and it is the same when a bit of
A is a 1. So the bits of X and A differ with probability
0.25, and thus X is much closer to A (and to B and to
C), and PSmith to name⊗ Pat, than what it would be
by chance: d(X, A) = 0.25 ± 0.0043, whereas d(A, B)
= 0.5 ± 0.005 by chance (getting d ≤ 0.25 by chance
is as unlikely as getting no more than 2,500 heads in
10,000 tosses of a coin). The standard deviation of
distance is based on the binomial distribution for N =
10,000 and δ = 0.25, 0.5 and it is given by σ =

.
For K ≠ 3 the distance is the following. If K is

even, we first add in a random vector R for a tie-
breaker and write it as X = [A + B + … + D (+ R)].
Now K is odd, and the expected distance is

δ(X, A) = − /2K

which is approximately 0.5 − 0.4/ (this
approximation is an improvement over one based on
Stirling’s factorial formula when K = 3, 5, 7, …, 49).
The expected distance is shown in Figure 4. The
thing to notice is that d need not be far from 1/2 to be
significantly different from it when N is large since
its standard deviation is so close to zero. It is in this
statistical sense that a chunk resembles its parts and
differs from unrelated codewords.

The distance δ is related to the correlation coeffi-
cient (normalized covariance) by ρ = 1 − 2δ (the rela-
tion is linear also when p ≠ 0.5, although it is more
complicated). The right margin of Figure 4 is labeled
with these correlations. Although the correlation

between a chunk and its parts is low, it is very signif-
icant when the code is wide (N > 1,000) and the parts
are few (K < 15).

Decoding. When XOR is used for binding, as in
name⊗ Pat, it is used also for “unbinding” or decod-
ing. To extract Pat from an encoded name-field, we
XOR with name:

name⊗ (name⊗ Pat) = (name⊗ name)⊗ Pat = Pat

because XOR is associative and is its own inverse
function. This is called probing.

Probing with name is used also for extracting Pat
from the chunked record PSmith. Because PSmith
resembles name⊗ Pat, name⊗ PSmith resembles
name⊗ (name⊗ Pat), which is Pat. In fact, the dis-
tance d(name⊗ PSmith, Pat) = d(PSmith, name⊗
Pat) = 0.25 ± 0.0043, because XORing with the same
vector, name, leaves the distances between vectors
unchanged. In the following we will write name⊗
PSmith as Pat′.

Clean-up Memory. We can think of Pat′ as a
noisy version of Pat that needs cleaning up. For that
purpose the system has a clean-up memory that keeps
track of all valid codewords—ones that have been
defined so far—and that takes noisy codewords as
inputs and produces noise-free codewords as outputs.
(The valid codewords mentioned up to now are
name, Pat, sex, male, age, 66, and PSmith, whereas
name⊗ Pat, sex⊗ male, and age⊗ 66 need not be
stored in the clean-up memory.)

We still need to assure that the decoding is unam-
biguous. Although Pat′ is close to Pat, it may also be
close to other valid codewords in the clean-up mem-
ory. So let us look closely at the structure of Pat′:

Pat′ = name⊗ PSmith
= name⊗ [name⊗ Pat + sex⊗ male + age⊗ 66]

which equals

[name⊗ (name⊗ Pat) + name⊗ (sex⊗ male) +
name⊗ (age⊗ 66)]

In other words, the XOR distributes over the chunked
parts.

To see why a⊗ X = a⊗ [A + … + D (+ R)] = [a⊗ A
+ … + a⊗ D (+ a⊗ R)], first consider the places (i.e.,
bit positions or columns) where a has a 0; in those
places XORing with a has no effect on X or on any of
its parts A, …, D, or R, so that in those places distrib-
utivity holds trivially. Secondly, wherever a has a 1 it
flips the bits of X, and we get the same result by flip-
ping those same bits in A, …, D, and R and then
applying the majority rule—wherever 0s were in the
majority now 1s are, and vice versa.

δ 1 δ–()() N⁄

1
2
--- K 1–

K 1–() 2⁄

K 0.44–

1
0

3 5 7 9 11 13

0.1

0.2

0.3

0.4

0.5

SET SIZE, K

D
IS

T
A

N
C

E
,

δ

C
O

R
R

E
L

A
T

IO
N

,
ρ

1

0.8

0.6

0.4

0.2

0

Figure 4. Distance and correlation between a holistic
record and its parts as a function of the number of
parts (set size) K.

4

The above expression gives us

Pat′ = [Pat + name⊗ sex⊗ male + name⊗ age⊗ 66]

which shows that, due to its structure, Pat′ resembles
also the vectors name⊗ sex⊗ male and name⊗ age⊗
66 (δ = 0.25). But these are not valid codewords and

therefore they are not in the clean-up memory. They
act merely as random noise (their distance to valid
codewords is 0.5 ± 0.005).

Figure 5 summarizes holistic encoding of a con-
ventional record of Figure 1c and extracting a “field”
from the holistic record.

name

Pat

sex

male

66

age

0 0 1 1 1 … 1 1

1 0 0 1 0 … 0 1
1 0 1 0 1 … 1 0 name = Pat⊗

1 0 0 0 1 … 1 0

1 1 1 1 1 … 0 0
0 1 1 1 0 … 1 0⊗

1 0 0 1 0 … 0 0

0 1 1 1 0 … 0 0
1 1 1 0 0 … 0 0⊗

sex = male

age = 66

2 2 3 1 1 … 2 0 (+)

> 3/2

1 1 1 0 0 … 1 0

0 0 1 1 1 … 1 1
1 1 0 1 1 … 0 1 ⊗

PSmith (A)

name
≈ Pat

CLEAN-UP

MEMORY

1 0 0 1 0 … 0 1Pat (B)

Figure 5. Holistic encoding and decoding. ‘name = Pat & sex = male & age = 66’ has been composed into the
holistic record PSmith (A), and then the name has been extracted from it (B). Codewords are random 10,000-
bit strings, ⊗ is bitwise Boolean XOR, and bitwise sums (+) are thresholded at 3/2, constituting the majority
rule. ‘≈ Pat’ means that the result is approximate but close enough for the Clean-up Memory to identify it.

5

4. PROCESSING EXAMPLES

The following examples provide insight into holistic
representation. Let us assume that we have four
records with identical structure, as shown in Table 1.
They give rise to 13 codewords in the clean-up mem-
ory, namely, name, Pat, Lee, sex, male, female, age,
33, 66, PF3 = [name⊗ Pat + sex⊗ female + age⊗ 33],
PM6 = [name⊗ Pat + sex⊗ male + age⊗ 66], LF6 =
[name⊗ Lee + sex⊗ female + age⊗ 66], and LM3 =
[name⊗ Lee + sex⊗ male + age⊗ 33].

We now ask the following question: “What is the
age of Lee who is a female?” This refers to LF6, and
we look for 66.

Case 1. In this case we assume that the codewords
name, Lee, sex, female, and age are known to us, but
LF6 is unknown even if it is in the clean-up memory.

Solution 1. We can first approximate LF6 by
replacing the unknown age⊗ 66 with a random vector
R, giving LFx = [name⊗ Lee + sex⊗ female + R]. It
contains 25% noise relative LF6, 37.5% relative to
PF3 and to LM3, and 50% relative to the other ten
codewords. The distances with standard deviations
for N = 10,000 are d(LFx, LF6) = 0.25 ± 0.0043;
d(LFx, PF3), d(LFx, LM3) = 0.375 ± 0.0048; and
d(LFx, other) = 0.5 ± 0.005. Because the standard
deviations are so small, cleaning up LFx will find the
correct LF6 with very high probability. Thereafter
we can probe LF6 with age and clean the result to 66.
We will write that as age⊗ LF6 → clean-up (0.25) →
66, where the 0.25 means that the amount of noise to
be cleaned up is 25%.

Case 2. In this case Pat, male, PM6, Lee, female,
and age are known, but name, sex, and LF6 are
unknown.

Solution 2c (c for ‘conventional’). We can find
name and sex by Pat⊗ PM6 → clean-up (0.25) →
name and male⊗ PM6 → clean-up (0.25) → sex.
From here on we can apply Solution 1.

Solution 2u (u for ‘unconventional’). Here we use
the correspondences Pat ↔ Lee and male ↔ female
to form the mapping T = [Pat⊗ Lee + male⊗ female
+ R] and with it map PM6 as a whole: PM6⊗ T →
clean-up (0.375) → LF6. The other two distances
that differ from 0.5 are significantly greater than
0.375, namely, d(PM6⊗ T, PF3), d(PM6⊗ T, LM3)
= 0.44 ± 0.005. Finally, age⊗ LF6 → clean-up (0.25)
→ 66, as above.

Solution 2u provides an opportunity to look at the
inner workings of holistic representation, its underly-
ing algebra. PM6⊗ T is first written out as

PM6⊗ T = PM6⊗ [Pat⊗ Lee + male⊗ female + R]

which, by distributivity, equals

[PM6⊗ Pat⊗ Lee + PM6⊗ male⊗ female + PM6⊗ R]

Substituting [name⊗ Pat + sex⊗ male + age⊗ 66] for
PM6 and applying distributivity a second time gives

PM6⊗ T = [[name⊗ Pat⊗ Pat⊗ Lee
+ sex⊗ male⊗ Pat⊗ Lee
+ age⊗ 66⊗ Pat⊗ Lee]

+ [name⊗ Pat⊗ male⊗ female
+ sex⊗ male⊗ male⊗ female
+ age⊗ 66⊗ male⊗ female]

+ PM6⊗ R]

which simplifies to

PM6⊗ T = [[name⊗ Lee + R1 + R2]
+ [R3 + sex⊗ female + R4] + R5]

where the R i stand for vectors that act as random
noise, as nothing corresponding to them is stored in
the clean-up memory. From this last expression for
PM6⊗ T we see why mapping with T takes PM6
near LF6: two of its parts are the same as in LF6,
with some noise added. The breakdown of LFx in
Solution 1 is similar except that the two known parts
there are noise-free. In that case the result is 25%
noisy compared to the present 37.5%.

Case 3. Now 33, PF3, and LF6 are known. The
codewords 33 and PF3 would allow us to find age,
and with it we could probe LF6, but it is instructive
to look at a less conventional one-step solution.

Solution 3a (a for ‘analogous’ [and also for
‘ambiguous’]). Think of a 33-year old Pat (PF3) ask-
ing Lee (LF6) the following question: “I’m 33; what
are you?” Of course Lee could answer “I’m female,”
but that would seem unnatural whereas “I’m 66”
seems natural. We will see how the holistic represen-
tation favors the latter answer over the former.

Since A = 33⊗ PF3 ≈ age and age⊗ LF6 ≈ 66, we
can try A⊗ LF6 directly without first recovering age.
We get that A⊗ LF6 is equally far from 66 and 33—
d(A⊗ LF6, 66), d(A⊗ LF6, 33) = 0.375 ± 0.0048—

name sex age

PF3 Pat female 33
PM6 Pat male 66
LF6 Lee female 66
LM3 Lee male 33

Table 1
Four Records for Holistic Encoding

6

and it is 0.5 away from all other valid codewords. So
although we do not find 66 unambiguously, a true but
anomalous answer such as “I’m female” is not even
suggested. The expression (33⊗ PF3)⊗ LF6 is easily
broken down algebraically, in the style of Solution
2u, and the breakdown shows how the two equally
likely answers emerge.

Comments on the Examples. The above examples
give cause for several comments.

1. The four records in Table 1 were chosen so that
none of them is determined by one attribute alone, so
although the records are few, they are nontrivial.

2. The records need not have identical structure.
For example, records that do not encode age are auto-
matically ignored, and records that encode all three
attributes plus additional ones would give somewhat
noisier results but would not confuse matters other-
wise. Also, the codewords used in encoding the
records can be noisy; there merely will be more noise
to clean up. Notice, also, that the bit pattern of a con-
ventional record depends on the order in which the
fields appear (cf. Fig. 3), whereas the order becomes
irrelevant when the information is encoded into a
holistic record.

3. The examples are not meant to suggest that tra-
ditional data bases should be encoded in this holistic
manner. These examples work because the records
have few fields. If the fields are too many, extracting
them from a holistic record is unreliable. However,
holistic records could supplement traditional data
bases, but how that should be done remains to be
researched.

4. Solutions 2u and 3a point to a fundamentally
new way of computing, namely, by holistic mapping,
which is a mapping between points of a very-high-
dimensional space. More is said about it below under
Beyond Correlation.

 5. SUMMARY AND DISCUSSION

Information with structure, such as language with its
grammatical structure or concepts built of other con-
cepts by some logic, has traditionally been the
domain of symbolic representation. Artificial neural
nets as mathematical models of the brain need to han-
dle such information. Out of this need has grown
holistic representation.

Holistic representation is fundamentally distrib-
uted whereas traditional representation, with its
dependence on records with fields, is local. Local
representation is common also in the nervous system.
Primary sensory–motor functions and basic emotions
are wired in genetically so that a nerve impulse in a

specific location has a specific meaning; it causes a
certain muscle fiber to contract, for example. How-
ever, the further away from the periphery a neural
circuit is, the less specific its individual neurons are.
Our present understanding is that higher mental func-
tions such as abstract thought and language depend
heavily on distributed representations.

This paper demonstrates holistic distributed repre-
sentation with the binary Spatter Code (Kanerva,
1994, 1995, 1996), which is a particularly simple
form of Holographic Reduced Representation (HRR;
Plate, 1994). The HRRs studied by Plate use real and
complex vectors, but all three—real, complex, and
binary—are related to each other mathematically.
Plate’s thesis includes a comprehensive survey of the
work leading to HRR and is highly recommended.

Holistic representation is uniform in the following
sense: all things—objects, properties, relations,
attributes, values, composed structures, mappings
between structures—are random points of an enor-
mous vector space: its dimensionality N > 1,000. The
vector components (the columns) are independent
and identically distributed (i.i.d.). In the real HRR
they are distributed normally with zero mean and 1/N
variance, in the complex HRR they are distributed
uniformly over the unit circle (magnitude = 1), and in
the binary HRR (i.e., the spatter code) 0s and 1s are
equally probable. Total absence of fields sets holistic
representation apart from traditional representation.

Holistic representation makes it possible to com-
bine structure and content, or syntax and semantics,
so that the distance between codewords δ, or their
correlation ρ, reflects similarity of both structure and
content: it reflects the similarity of meaning. That
makes holistic representation an interesting candidate
for mental representation.

Representations are synthesized from parts by
chunking. A part is like a field in a record or a slot in
a frame, for example, and the parts are chunked
together by normalizing their sum (i.e., by superposi-
tion; thresholded sum for the binary spatter code).
The chunked representation—the holistic record—
correlates with its parts, as shown in Figure 4. When
the dimensionality is high, even a low correlation
between a chunk and its parts is significant. This mat-
ters greatly in the analysis of chunked representa-
tions. Since the chunking operator (normalized sum)
is commutative, the chunked record represents the set
of its parts.

Both single codewords and codewords combined
by binding can serve as elements or parts for chunk-
ing. In the examples of this paper, some parts have

7

been formed by binding a field name and a field
value to each other (e.g., name⊗ Pat), others by bind-
ing analogous values to each other (e.g., Pat⊗ Lee in
Solution 2u), and also a random vector R has been
used as a part. The binary spatter code binds with bit-
wise XOR, the real HRR binds with circular convolu-
tion, and the complex HRR with coordinatewise
complex multiplication (adding together of phase
angles).

Chunked codewords are analyzed by probing and
clean-up. A codeword that has been used for binding
(e.g., name) is used also for probing, and the probing
operator is the inverse of the binding operator. The
probing operator for the binary spatter code is the
same XOR as used in binding (cf. Decoding above),
for the real HRR it is inverse convolution (also called
‘correlation’ and realized by convolution with a
“reflected” probe), and for the complex HRR it is
complex division (realized by coordinatewise multi-
plication with the probe’s complex conjugates). It is
important mathematically that the probing operator
distributes over the chunking operator (with the real
HRR it distributes only approximately, but that is
good enough).

Probing of chunked codewords produces noisy
results, and the noise increases with the number of
chunked parts, K, according to Figure 4. However,
the statistics of long, random codewords are such that
the valid codeword closest to a noisy result is correct
with high probability. Therefore a system based on
holistic representation needs a clean-up memory that
realizes the nearest-neighbor method. The clean-up
memory could be a table of valid codewords and a
procedure for finding the best-matching table entry
for any noisy codeword, or it could be an autoasso-
ciative neural net that stores valid codewords as point
attractors. For the neural net to work well, however,
it must have large and regular basins of attraction,
because the amount of noise that needs cleaning up is
easily 35% (see Fig. 4). However, there is a limit to
how much noise can be cleaned up reliably, which in
turn limits the number of parts that can be chunked at
once into a holistic record if such a record is to be
analyzable.

Correlation Between Codewords. In the examples
of this paper we have assumed a base set of random
codewords name, Pat, Lee, sex, …, 66 that are
uncorrelated. This idealization is useful in getting the
discussion started, but whichever way we start, we
soon deal with correlated codewords, because the
idea in holistic representation is that similar meaning
should be reflected in the similarity of bit patterns.

For example, we would expect the codewords for
similar names to be similar; Pat and Pam should cor-
relate quite highly.

The Scatter Code of Smith and Stanford (1990)
demonstrates this principle beautifully. Numbers are
encoded in random N-bit strings so that the Hamming
distance between them grows stochastically with the
difference between the numbers. The codewords for
adjacent integers are only a few bits apart, but as we
move from one integer to the next, a few bits are cho-
sen at random and flipped. The expected correlation
between codewords decreases as a negative exponen-
tial of the difference between the numbers, and the
codewords for very different integers are approxi-
mately N/2 bits apart. In the multidimensional Scatter
Code such codewords for the individual dimensions
are bound together with coordinatewise XOR (Stan-
ford & Smith, 1994).

As new codewords are built from existing ones,
they, too, are random but not necessarily uncorre-
lated. Codewords that share parts or that are made of
similar parts are correlated. For example, if we
encode the second record of Figure 2 using an uncor-
related codeword female, the resulting PSmithF cor-
relates with the first PSmith (δ = 0.25, ρ = 0.5; the
conventional records differ in only one bit out of 68,
and for them ρ = 0.97). So why don’t added levels of
composition eventually drive everything into some
small part of the code space? Chunking has the ten-
dency to do exactly that, but fortunately binding
(with XOR) has the opposite tendency to scatter
things about. It is significant mathematically that the
binding and chunking operators complement each
other in this way.

Beyond Correlation. Correlation alone apparently
lacks the power to fully describe structure, such as
found in language. In language research, at least, sta-
tistical approaches are only a part of the picture, and
logical and symbolic approaches are often the major
part. That is particularly true as regards grammar.

Holistic representation allows mapping between
codewords that may meet this added need for struc-
tural description. A high correlation between code-
words means that they are related—the codewords
occupy some small part of the code space. But signif-
icant relations between structures—and codewords—
can also exist when the codewords are uncorrelated;
when they are in totally different parts of the code
space. Then the relation is analogical. Holistic
records for (Pat, male, 66) and (Lee, female, 33)
would be uncorrelated, whereas the structures clearly
are related. The same three variables simply have

8

very different values. The relation between such
records is by holistic mapping.

We already have two examples of holistic map-
ping. The mapping T in Solution 2u is composed of
analogous parts of PM6 and LF6 by binding and
chunking—the same operations that build holistic
records. In Solution 3a, (33⊗ PF3)⊗ LF6 can be
interpreted as a request to find in LF6 the part that
corresponds to the 33 of PF3, in other words, the
analogous part. It is to be noted that these mappings
themselves are points of the common code space, so
that it is even possible to represent and study analo-
gies between analogies within this system.

How are holistic representations brainlike beyond
how artificial neural nets at large are? They work
only with large patterns (N > 1,000) that are funda-
mentally random, and information is distributed in
the extreme, including the information about the
structure of information (there are no fields). Systems
scale readily to brain-size, yet composition should be
done in relatively small chunks (evidence for Miller’s
7 ± 2). Brains are instruments of learning; encoding
new structure with holistic representation is simple,
and the mapping of codewords provides a potentially
useful model of analogy.

In this paper we have described holistic representa-
tion within the framework of traditional representa-
tion. However, producing the functions of traditional
representation is not the final goal although it is an
important criterion and a measure of credibility. The
ultimate challenge and goal is to capture and describe
structure in a stream of data by binding, chunking,
and holistic mapping—and by whatever other useful
operations are found. An added desideratum is that it
should be relatively easy for us to interpret the result-
ing structure symbolically or logically if we so wish.

References
Anderson, J.A. (1995) An Introduction to Neural Networks.

Cambridge, Mass.: MIT Press.
Hinton, G.E. (1990) Mapping part–whole hierarchies into con-

nectionist networks. Artificial Intelligence 46(1–2):47–75.
Hinton, G.E., McClelland, J.L., and Rumelhart, D.E. (1986) Dis-

tributed representation. In D.E. Rumelhart and J.L. McClel-
land (eds.) Parallel Distributed Processing, vol. 1; 77–109.
Cambridge, Mass.: MIT Press.

Kanerva, P. (1994) The Spatter Code for encoding concepts at
many levels. In M. Marinaro and P.G. Morasso (eds.), ICANN
’94, Proceedings International Conference on Artificial Neu-
ral Networks, vol. 1; 226–229. London: Springer–Verlag.

Kanerva, P. (1995) A family of binary spatter codes. In F. Fogel-
man-Soulie and P. Gallineri (eds.), ICANN ’95, Proceedings
International Conference on Artificial Neural Networks, vol.
1; 517–522. Paris: EC2 & Cie.

Kanerva, P. (1996) Binary spatter-coding of ordered K-tuples. In
C. von der Malsburg, W. von Seelen, J.C. Vorbruggen, and B.
Sendhoff (eds.), Artificial Neural Networks—ICANN 96 Pro-
ceedings; 869–873. Berlin: Springer.

Plate, T.A. (1984) Distributed Representations and Nested Com-
positional Structure. PhD thesis. Graduate Department of
Computer Science, University of Toronto. (Available on
Internet Ftp-host: ftp.cs.utoronto.ca as Ftp-file: /pub/tap/
plate.thesis.ps.Z)

Pollack, J.P. (1990) Recursive distributed representations. Artifi-
cial Intelligence 46(1–2):77–105.

Smith, D., and Stanford, P. (1990) A random walk in Hamming
space. Proceedings 1990 International Joint Conference on
Neural Networks (IJCNN 90), vol. 2; 465–470.

Smolensky, P. (1990) Tensor product variable binding and the
representation of symbolic structures in connectionist sys-
tems. Artificial Intelligence 46(1–2):159–216.

Stanford, P., and Smith, D. (1994) The multidimensional Scatter
Code: A data fusion technique with exponential capacity. In
M. Marinaro and P.G. Morasso (eds.), ICANN ’94, Proceed-
ings International Conference on Artificial Neural Networks,
vol 2; 1432–1435. London: Springer–Verlag.

Touretzky, D.S. (1990) BoltzCONS: Dynamic symbolic struc-
tures in connectionist networks. Artificial Intelligence 46(1–
2):5–46.

Touretzky, D.S., and Geva, S. (1987) A distributed connectionist
representation for concept structures. Proceedings of the
Ninth Annual Conference of the Cognitive Science Society;
155–164. Hillsdale, NJ: Erlbaum.

